skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lonsdale, Colin_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The reliable detection of the global 21-cm signal, a key tracer of Cosmic Dawn and the Epoch of Reionization, requires meticulous data modelling and robust statistical frameworks for model validation and comparison. In Paper I of this series, we presented the beam-factor-based chromaticity correction (BFCC) model for spectrometer data processed using BFCC to suppress instrumentally induced spectral structure. We demonstrated that the BFCC model, with complexity calibrated by Bayes factor-based model comparison (BFBMC), enables unbiased recovery of a 21-cm signal consistent with the one reported by The Experiment to Detect the Global Epoch of Reionization Signature (EDGES) from simulated data. Here, we extend the evaluation of the BFCC model to lower amplitude 21-cm signal scenarios where deriving reliable conclusions about a model’s capacity to recover unbiased 21-cm signal estimates using BFBMC is more challenging. Using realistic simulations of chromaticity-corrected EDGES-low spectrometer data, we evaluate three signal amplitude regimes – null, moderate, and high. We then conduct a Bayesian comparison between the BFCC model and three alternative models previously applied to 21-cm signal estimation from EDGES data. To mitigate biases introduced by systematics in the 21-cm signal model fit, we incorporate the Bayesian Null-Test-Evidence-Ratio (BaNTER) validation framework and implement a Bayesian inference workflow based on posterior odds of the validated models. The BaNTER-validated posterior-odds-based methodology presented here is general and transferable to other global 21-cm experiments employing Bayesian signal inference. We demonstrate that, unlike BFBMC alone, this approach consistently recovers 21-cm signal estimates that align with the true signal across all amplitude regimes, advancing robust global 21-cm signal detection methodologies. 
    more » « less
  2. Abstract The first very long baseline interferometry (VLBI) detections at 870μm wavelength (345 GHz frequency) are reported, achieving the highest diffraction-limited angular resolution yet obtained from the surface of the Earth and the highest-frequency example of the VLBI technique to date. These include strong detections for multiple sources observed on intercontinental baselines between telescopes in Chile, Hawaii, and Spain, obtained during observations in 2018 October. The longest-baseline detections approach 11 Gλ, corresponding to an angular resolution, or fringe spacing, of 19μas. The Allan deviation of the visibility phase at 870μm is comparable to that at 1.3 mm on the relevant integration timescales between 2 and 100 s. The detections confirm that the sensitivity and signal chain stability of stations in the Event Horizon Telescope (EHT) array are suitable for VLBI observations at 870μm. Operation at this short wavelength, combined with anticipated enhancements of the EHT, will lead to a unique high angular resolution instrument for black hole studies, capable of resolving the event horizons of supermassive black holes in both space and time. 
    more » « less